Dehalococcoides as a Potential Biomarker Evidence for Uncharacterized Organohalides in Environmental Samples

نویسندگان

  • Qihong Lu
  • Ling Yu
  • Zhiwei Liang
  • Qingyun Yan
  • Zhili He
  • Tiangang Luan
  • Dawei Liang
  • Shanquan Wang
چکیده

The massive production and improper disposal of organohalides resulted in worldwide contamination in soil and water. However, their environmental survey based on chromatographic methods was hindered by challenges in testing the extremely wide variety of organohalides. Dehalococcoides as obligate organohalide-respiring bacteria exclusively use organohalides as electron acceptors to support their growth, of which the presence could be coupled with organohalides and, therefore, could be employed as a biomarker of the organohalide pollution. In this study, Dehalococcoides was screened in various samples of bioreactors and subsurface environments, showing the wide distribution of Dehalococcoides in sludge and sediment. Further laboratory cultivation confirmed the dechlorination activities of those Dehalococcoides. Among those samples, Dehalococcoides accounting for 1.8% of the total microbial community was found in an anaerobic granular sludge sample collected from a full-scale bioreactor treating petroleum wastewater. Experimental evidence suggested that the influent wastewater in the bioreactor contained bromomethane which support the growth of Dehalococcoides. This study demonstrated that Dehalococcoides could be employed as a promising biomarker to test the present of organohalides in wastestreams or other environmental samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxygen effect on Dehalococcoides viability and biomarker quantification.

Oxygen-sensitive Dehalococcoides bacteria play crucial roles in detoxification of chlorinated contaminants (e.g., chlorinated ethenes), and bioremediation monitoring relies on quantification of Dehalococcoides DNA and RNA biomarkers. To explore the effects of oxygen on Dehalococcoides activity, viability, and biomarker quantification, batch experiments with a tetrachloroethene-to-ethene dechlor...

متن کامل

Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp.

This study characterizes the transcriptional expression of the reductive dehalogenase (RDase)-encoding tceA and vcrA genes and evaluates their applicability as potential biological markers of Dehalococcoides activity. When Dehalococcoides ethenogenes 195 was provided with trichloroethene (TCE) as the electron acceptor, the expression of the tceA gene increased by 90-fold relative to that in cel...

متن کامل

Quantifying genes and transcripts to assess the in situ physiology of "Dehalococcoides" spp. in a trichloroethene-contaminated groundwater site.

Quantitative PCR (qPCR) was coupled with reverse transcription (RT) to analyze both gene copy numbers and transcripts of the 16S rRNA gene and three reductive dehalogenase (RDase) genes (tceA, vcrA, and bvcA) as biomarkers of "Dehalococcoides" spp. in the groundwater of a trichloroethene-dense nonaqueous-phase liquid site at Fort Lewis, WA, that was sequentially subjected to biostimulation and ...

متن کامل

16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species.

Members of the genera Desulfuromonas and Dehalococcoides reductively dechlorinate tetrachloroethene (PCE) and trichloroethene. Two primer pairs specific to hypervariable regions of the 16S rRNA genes of the Dehalococcoides group (comprising Dehalococcoides ethenogenes and Dehalococcoides sp. strain FL2) and the acetate-oxidizing, PCE-dechlorinating Desulfuromonas group (comprising Desulfuromona...

متن کامل

Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains.

The 16S rRNA gene provides insufficient information to infer the range of chloroorganic electron acceptors used by different Dehalococcoides organisms. To overcome this limitation and provide enhanced diagnostic tools for growth measurements, site assessment, and bioremediation monitoring, a quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes and three Dehalococcoides reductive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017